Linear Algebra & Geometry
LECTURE 13

 Linear mappings
* Nullity and rank
« Matrices of linear mappings



Linear Mappings
Definition. (reminder)
Let IV and W be vector spaces over a field IF . A function @:V - W
Is called a linear mapping iff
(@) (Vu,veV)pu+v) =)+ e(v) (additivity),
(b) (Vv € V)(Vp € F) o(pv) = pe(v) (homogeneity) .

Example.
For every n x k matrix A the function f,: F**P — F**P defined
as f,(X) = AX is a linear mapping.

Additivity follows from distributivity of matrix multiplication over
addition.

Homogeneity is obvious: for every i and j, f4(1X)(i,j) =
AAX)(0,J) = Lg=1 A, $)AX(s,]) = A Xg=1 A, $)X(s,)) =
AMAXG, ) = Ma(X) (0 ).



Rank and nullity

Definition. Let ¢: V — W be a linear mapping. The image of ¢ Is
the set im ¢ = @ (V) and the kernel of ¢ is the set

kero ={veV:.pw) =0y}
Proposition. img is a subspace of W and kerg is a subspace of V.
Proof. Let wy, w, € img. There exist v, v, € V such that ¢ (v;) =
wi, i = 1,2. Then pw; + qw, = pp(v) + qp(v2) = @(pv, +
qu,) € img, hence img is a subspace of W.
For every v, v, € kerop, p(av, + bv,) = ap(v,) + bp(v,) =
a® + bO® = 0 hence, kergis a subspace of V. QED

Definition. rank(¢) = dim(ime), nullity(¢) = dim(kerg) .
Example. LetV =W = R, [x] and ¢(f(x)) = f '(x). Then kerp =
R, [x], the space of all constant polynomials and img=R,,_;[x].
Hence, rank (@) = n and nullity(¢) = 1.



Proposition. For every set {v,, v,, ... ,v,} € V and for every
linear mapping @:V - W,

@(span(vy, vz, ... ,Vp)) = span(@(vy), 9(v2), ... , @ (vn)).
Proof. (Obvious)

Example. For every n X k matrix 4, f(X) = AX is a linear
mapping, f: F* — F™. kerf is the solution set (space, really) for
AX = 0 hence, nullity of f is the dimension of the solution
space. On the other hand, denoting by ey, e,, ..., e; the unit
vectors of F* we obtain that im f is spanned by {f (e,), f (e,),
.., f(er)} ={Aeq, ..., Ae} 1.e., by the columns of A. Hence, the
rank of f is the number of linearly independent columns of A
which iIs the same as rank of A.



Theorem.
For every linear mapping ¢:V - W

rank (@) + nullity(@) = dimV
Proof. Let {v;,v,, ... ,v,} be a basis for kere. There exist vectors
W1, Wo, ... , Wy such that {v, v,, ... , v, Wy, W5, ... , Wi} IS a basis
for V. It is enough to show that S = {@(w,), e(W5), ..., (W)} IS
a basis for im ¢. Since span(S) = im ¢, it is enough to show
that S is linearly independent. Let ¥ . a;o(w;) = 0. By
linearity of ¢, 0y, = XX, a;0(wy) = (XK, awy) e,

k_ a;w; € kerg so, for some scalars by, b, ... , b, We have

{-Czl a;,w; = ?=1 b]UJ This ImpIIeS Zéc=1 a;w; — ?=1 ijj =

Oy hence, all a; and b; are zeroes. QED



Corollary.
If A Is an n X k matrix then the dimension of the solution space of
the homogeneous system of equations AX = 0 Is k —rank(A).

Note.

Every n-dimensional vector space V over a field IF Is isomorphic
with [F",

Proof. Let R = {v,,v,, ... ,v,} be a basis of V. The function
d(x) = (aq,ay, ...,a,), Where a4, a,, ..., a, are unique scalars
such that x = );7—; a,v, maps V into F™ is an isomorphism. QED

The vector (a4, a,, ..., ay) IS called the coordinate vector of x with
respect to R and is often denoted by [x]x.

From now on we will use IF", rather than general symbol V' of a
vector space.



Definition. Let ¢: F* — F" be a linear mapping and let R =
{V{,V3, ... , v} and S = {wy,w,, ... ,w,,} be bases for F* and F",
respectively. For each v; there exist unique scalars a, ;, a, ;, ...,
a,; suchthat (v;) = a;jwy +azw, + ... +ayijw, =

=1 as ;Ws. The k x n matrix Mg (@) = [a; ;] is called the matrix
of ¢ Inbases R and S.

Remark. In other words, the i-th column of the matrix M&(¢) is
equal to [ (v;)]s, the coordinate vector of ¢ (v;) In the basis S.

Remark. The matrix of a linear mapping ¢ depends on the choice
of the bases R and S, but the size of the matrix depends only on the
dimensions of the domain and the range of ¢.

It may happen that two different linear mappings may have the
same matrix but with respect to two pairs of bases.



Example.

Let p: R® - R?%, @(x,v,2) = (x + 2y-2z,3x—y + 2z). Find the
matrix for ¢ in bases R = {(0,1,1), (1,0,1), (1,1,0)}and S =
{(1,1), (1,0)}.

We must calculate the values of ¢ on vectors from R and represent
them as linear combinations of vectors from S.

¢(0,1,1) = (0,1) =1(1,1) + (-1)(1,0),

¢(1,01) = (-1,5) = 5(1,1) + (-6)(1,0),

¢(1,1,0) = (3,2) = 2(1,1) + 1(1,0).

Finally, we form the matrix placing the coefficients of the linear

1 5 2

combinations in consecutive columns, M& (@) = [_1 e 1l



Theorem.

Let ¢: F* — F™ be a linear mapping, let R = {vy, vy, ... , v}, S =
{wy,Ws, ... ,w,,} be bases for F* and F", respectively, and let A be
an n X k matrix. Then:

((vx € F)[p@)]s = A[x]R) & A= ME(p).

Proof. (&) Let M (¢p) = A = [a; ;] and [x]g =[xy, %y ... , X, ] i€,
x — i{ 1 x;v;. Then, (P(x) = (P(Zl 1xlv) Z 1xl(p(vl) =
=1 Xi Zs 1aSlWS — 12 1xl(aSlWS) — S=1(Zi=1 xlaS,l)WS
(comprehensmn why can we change the order of summation?)
k k
which means [p(x)]s = (TE L XA s Dujmg XiAg iy e l 1 XAk i)

k
M (@)[x]gr = A [x]g (Zl 1a11xl, i=1A2,iXi s ) z 1 Ak,i Xi),
(except that the vectors [¢(x)]s and MZ (¢)[x]x should be written as columns).

(=) Replacing x with v; one gets i-th column of M&(¢). QED



Fact.
All linear mappings are functions of the form @ (X) = AX.



Theorem.

Let ¢: F* — F" and y: F* — FP be linear maps and let R, S

and T be bases for F*, F"* and [FP, respectively. Then
M7 (W o @) = MP ()M ().

Proof.

For every x € F*, M (¥ © @) [x]g = [ © @) (X)]7 =

[l/)(cp(x))]T = M) [e()]s = MPW)(M§ (p)[x]r) =

(ME@)IME(@)) [x]z -
From the if part of the previous theorem we get

M7 (o ) = Mz ((p)Mg (p). QED
Corollary.
Matrix multiplication is associative.



Linear operators
From now on, we will study linear maps which map a vector
space into itself. They are called linear operators.

If ¢ is a linear operator and R is a basis then MX (¢) is called the
matrix of ¢ in (with resp. to) R and is denoted by My ().



Example.
Consider ¢: R? - R?, ¢(x,y) = (x + y,x —y). Find M¢(¢) and

To find Mz (¢):
¢(1,1) = (2,0) = a(1,1) + b(2,1). Solving the system of
_ {a 4+2b =2
equations wegeta =—-2,b = 2.
a+b=0
0(2,1) =(3,1) =c(1,1) + d(2,1). Solving the system of
equations {CC_:_dez_lg we getc = —1,d = 2. Hence, Mp (@) =
P
2 2 1

Obviously, Ms(@) = H _11] (because ¢(1,0) = (1,1) =
1(1,0) + 1(0,1) and ¢(0,1) = (1,—1) = 1(1,0) + (—1)(0,1)).



