Linear Algebra & Geometry LECTURE 13

- Linear mappings
- Nullity and rank
- Matrices of linear mappings

Linear Mappings

Definition. (reminder)

Let *V* and *W* be vector spaces over a field \mathbb{F} . A function $\varphi: V \to W$ is called a *linear mapping* iff (a) $(\forall u, v \in V) \varphi(u + v) = \varphi(u) + \varphi(v)$ (additivity),

(b) $(\forall v \in V) (\forall p \in \mathbb{F}) \varphi(pv) = p\varphi(v)$ (homogeneity).

Example.

For every $n \times k$ matrix A the function $f_A: \mathbb{F}^{k \times p} \to \mathbb{F}^{n \times p}$ defined as $f_A(X) = AX$ is a linear mapping.

Additivity follows from distributivity of matrix multiplication over addition.

Homogeneity is obvious: for every *i* and *j*, $f_A(\lambda X)(i, j) = A(\lambda X)(i, j) = \sum_{s=1}^n A(i, s)\lambda X(s, j) = \lambda \sum_{s=1}^n A(i, s)X(s, j) = \lambda (AX(i, j)) = \lambda f_A(X)(i, j).$

Rank and nullity

Definition. Let $\varphi: V \to W$ be a linear mapping. The *image* of φ is the set im $\varphi = \varphi(V)$ and the *kernel* of φ is the set $\ker \varphi = \{v \in V : \varphi(v) = \Theta_W\}$

Proposition. im φ is a subspace of W and ker φ is a subspace of V. **Proof.** Let $w_1, w_2 \in im\varphi$. There exist $v_1, v_2 \in V$ such that $\varphi(v_i) = w_i, i = 1, 2$. Then $pw_1 + qw_2 = p\varphi(v_1) + q\varphi(v_2) = \varphi(pv_1 + qv_2) \in im\varphi$, hence $im\varphi$ is a subspace of W. For every $v_1, v_2 \in ker\varphi$, $\varphi(av_1 + bv_2) = a\varphi(v_1) + b\varphi(v_2) =$

 $a\Theta + b\Theta = \Theta$ hence, ker φ is a subspace of V. QED

Definition. $rank(\varphi) = \dim(im\varphi), nullity(\varphi) = \dim(ker\varphi)$.

Example. Let $V = W = \mathbb{R}_n[x]$ and $\varphi(f(x)) = f'(x)$. Then ker $\varphi = \mathbb{R}_0[x]$, the space of all constant polynomials and $\operatorname{im} \varphi = \mathbb{R}_{n-1}[x]$. Hence, $\operatorname{rank}(\varphi) = n$ and $\operatorname{nullity}(\varphi) = 1$. **Proposition**. For every set $\{v_1, v_2, ..., v_n\} \subseteq V$ and for every linear mapping $\varphi: V \to W$, $\varphi(span(v_1, v_2, ..., v_n)) = span(\varphi(v_1), \varphi(v_2), ..., \varphi(v_n))$. **Proof**. (Obvious)

Example. For every $n \times k$ matrix A, f(X) = AX is a linear mapping, $f: \mathbb{F}^k \to \mathbb{F}^n$. ker f is the solution set (space, really) for $AX = \Theta$ hence, *nullity* of f is the dimension of the solution space. On the other hand, denoting by e_1, e_2, \dots, e_k the unit vectors of \mathbb{F}^k we obtain that im f is spanned by $\{f(e_1), f(e_2), \dots, f(e_k)\} = \{Ae_1, \dots, Ae_k\}$ i.e., by the columns of A. Hence, the rank of f is the number of linearly independent columns of A which is the same as rank of A.

Theorem.

For every linear mapping $\varphi: V \to W$

 $rank(\varphi) + nullity(\varphi) = dimV$

Proof. Let $\{v_1, v_2, ..., v_n\}$ be a basis for ker φ . There exist vectors $w_1, w_2, ..., w_k$ such that $\{v_1, v_2, ..., v_n, w_1, w_2, ..., w_k\}$ is a basis for *V*. It is enough to show that $S = \{\varphi(w_1), \varphi(w_2), ..., \varphi(w_k)\}$ is a basis for im φ . Since $span(S) = im \varphi$, it is enough to show that *S* is linearly independent. Let $\sum_{i=1}^{k} a_i \varphi(w_i) = \Theta_W$. By linearity of φ , $\Theta_W = \sum_{i=1}^{k} a_i \varphi(w_i) = \varphi(\sum_{i=1}^{k} a_i w_i)$ i.e., $\sum_{i=1}^{k} a_i w_i \in \text{ker}\varphi$ so, for some scalars $b_1, b_2, ..., b_n$ we have $\sum_{i=1}^{k} a_i w_i = \sum_{j=1}^{n} b_j v_j$. This implies $\sum_{i=1}^{k} a_i w_i - \sum_{j=1}^{n} b_j v_j = \Theta_V$ hence, all a_i and b_j are zeroes. QED

Corollary.

If A is an $n \times k$ matrix then the dimension of the solution space of the homogeneous system of equations $AX = \Theta$ is k - rank(A).

Note.

Every *n*-dimensional vector space V over a field \mathbb{F} is *isomorphic* with \mathbb{F}^n .

Proof. Let $R = \{v_1, v_2, ..., v_n\}$ be a basis of *V*. The function $\Phi(x) = (a_1, a_2, ..., a_n)$, where $a_1, a_2, ..., a_n$ are unique scalars such that $x = \sum_{s=1}^n a_s v_s$ maps *V* into \mathbb{F}^n is an isomorphism. QED

The vector $(a_1, a_2, ..., a_n)$ is called the *coordinate vector* of x with respect to R and is often denoted by $[x]_R$. From now on we will use \mathbb{F}^n , rather than general symbol V of a vector space. **Definition**. Let $\varphi: \mathbb{F}^k \to \mathbb{F}^n$ be a linear mapping and let $R = \{v_1, v_2, \dots, v_k\}$ and $S = \{w_1, w_2, \dots, w_n\}$ be bases for \mathbb{F}^k and \mathbb{F}^n , respectively. For each v_i there exist unique scalars $a_{1,i}, a_{2,i}, \dots$, $a_{n,i}$ such that $\varphi(v_i) = a_{1,i}w_1 + a_{2,i}w_2 + \dots + a_{n,i}w_n = \sum_{s=1}^n a_{s,i}w_s$. The $k \times n$ matrix $M_S^R(\varphi) = [a_{i,j}]$ is called the matrix of φ in bases R and S.

Remark. In other words, the *i*-th column of the matrix $M_S^R(\varphi)$ is equal to $[\varphi(v_i)]_S$, the coordinate vector of $\varphi(v_i)$ in the basis *S*. **Remark**. The matrix of a linear mapping φ depends on the choice of the bases *R* and *S*, but the size of the matrix depends only on the dimensions of the domain and the range of φ .

It may happen that two different linear mappings may have the same matrix but with respect to two pairs of bases.

Example.

Let $\varphi : \mathbb{R}^3 \to \mathbb{R}^2$, $\varphi(x, y, z) = (x + 2y - 2z, 3x - y + 2z)$. Find the matrix for φ in bases $R = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ and $S = \{(1, 1), (1, 0)\}$.

We must calculate the values of φ on vectors from R and represent them as linear combinations of vectors from S.

$$\begin{aligned} \varphi(0,1,1) &= (0,1) = 1(1,1) + (-1)(1,0), \\ \varphi(1,0,1) &= (-1,5) = 5(1,1) + (-6)(1,0), \\ \varphi(1,1,0) &= (3,2) = 2(1,1) + 1(1,0). \end{aligned}$$

Finally, we form the matrix placing the coefficients of the linear combinations in consecutive columns, $M_S^R(\varphi) = \begin{bmatrix} 1 & 5 & 2 \\ -1 & -6 & 1 \end{bmatrix}$.

Theorem.

Let $\varphi \colon \mathbb{F}^k \to \mathbb{F}^n$ be a linear mapping, let $R = \{v_1, v_2, \dots, v_k\}, S = \{w_1, w_2, \dots, w_n\}$ be bases for \mathbb{F}^k and \mathbb{F}^n , respectively, and let A be an $n \times k$ matrix. Then:

 $\left(\left(\forall x \in \mathbb{F}^k \right) [\varphi(x)]_S = A[x]_R \right) \Leftrightarrow A = M_S^R(\varphi).$ **Proof.** (\Leftrightarrow) Let $M_S^R(\varphi) = A = [a_{i,j}]$ and $[x]_R = [x_1, x_2, \dots, x_k]$ i.e., $x = \sum_{i=1}^k x_i v_i$. Then, $\varphi(x) = \varphi\left(\sum_{i=1}^k x_i v_i\right) = \sum_{i=1}^k x_i \varphi(v_i) = \sum_{i=1}^k x_i \sum_{s=1}^n a_{s,i} w_s = \sum_{i=1}^k \sum_{s=1}^n x_i (a_{s,i} w_s) = \sum_{s=1}^n (\sum_{i=1}^k x_i a_{s,i}) w_s$ (comprehension: why can we change the order of summation?) which means $[\varphi(x)]_S = (\sum_{i=1}^k x_i a_{1,i}, \sum_{i=1}^k x_i a_{2,i}, \dots, \sum_{i=1}^k x_i a_{k,i}). M_S^R(\varphi)[x]_R = A [x]_R = (\sum_{i=1}^k a_{1,i} x_i, \sum_{i=1}^k a_{2,i} x_i, \dots, \sum_{i=1}^k a_{k,i} x_i),$

(except that the vectors $[\varphi(x)]_S$ and $M_S^R(\varphi)[x]_R$ should be written as columns). (\Rightarrow) Replacing x with v_i one gets *i*-th column of $M_S^R(\varphi)$. QED

Fact. All linear mappings are functions of the form $\varphi(X) = AX$.

Theorem.

Let $\varphi \colon \mathbb{F}^k \to \mathbb{F}^n$ and $\psi \colon \mathbb{F}^n \to \mathbb{F}^p$ be linear maps and let R, Sand T be bases for $\mathbb{F}^k, \mathbb{F}^n$ and \mathbb{F}^p , respectively. Then $M_T^R(\psi \circ \varphi) = M_T^S(\psi) M_S^R(\varphi).$

Proof.

For every
$$x \in \mathbb{F}^k$$
, $M_T^R(\psi \circ \varphi)[x]_R = [(\psi \circ \varphi)(x)]_T = [\psi(\varphi(x))]_T = M_T^S(\psi)[\varphi(x)]_S = M_T^S(\psi)(M_S^R(\varphi)[x]_R) = (M_T^S(\psi)M_S^R(\varphi))[x]_R$.

From the *if* part of the previous theorem we get $M_T^R(\psi \circ \varphi) = M_T^S(\psi)M_S^R(\varphi)$. QED **Corollary.**

Matrix multiplication is associative.

Linear operators

From now on, we will study linear maps which map a vector space into itself. They are called *linear operators*.

If φ is a linear operator and *R* is a basis then $M_R^R(\varphi)$ is called the matrix of φ in (with resp. to) *R* and is denoted by $M_R(\varphi)$.

Example.

Consider $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$, $\varphi(x, y) = (x + y, x - y)$. Find $M_S(\varphi)$ and $M_R(\varphi)$, where $S = \{(1,0), (0,1)\}$ and $R = \{(1,1), (2,1)\}$. To find $M_R(\varphi)$: $\varphi(1,1) = (2,0) = a(1,1) + b(2,1)$. Solving the system of equations $\begin{cases} a+2b=2\\ a+b=0 \end{cases}$ we get a = -2, b = 2. $\varphi(2,1) = (3,1) = c(1,1) + d(2,1)$. Solving the system of equations $\begin{cases} c+2d=3\\ c+d=1 \end{cases}$ we get c = -1, d = 2. Hence, $M_R(\varphi) =$ $\begin{bmatrix} -2 & -1 \\ 2 & 2 \end{bmatrix}$. Obviously, $M_S(\varphi) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ (because $\varphi(1,0) = (1,1) =$ 1(1,0) + 1(0,1) and $\varphi(0,1) = (1,-1) = 1(1,0) + (-1)(0,1)$.